
A flexible, extensible interface
between compiled languages
and the statistics system R

Michael H. Prager
Erik H. Williams
Population Dynamics Team
NOAA Beaufort Laboratory

Presented within NMFS: March, 2004
Revised for Web: August, 2005

Preface

This talk was given at U.S. National Marine
Fisheries Service (NMFS) national stock-
assessment meeting, 2004.

Stock assessment is the modeling of a fish
population to determine its status & the
impacts of fishing.

This version of the talk has been edited
slightly for a general modeling audience.

Modeling methods

Much of our modeling work is done
with commercial package AD Model
Builder.

Optimization and modeling package

Uses automatic differentiation

C++ code generator—makes compiled
models

Models tend to be large and time
consuming.

Problem definition

Situation: Modeling work in ADMB often
results in poorly structured ASCII output.

Problem: Assessment workshop
participants can spend hours making
diagnostic plots and tables of runs.

Needed: A quicker way to examine model
results.
Also: A way to make figures and tables
more expeditiously for reports.

Criteria for solution

Minimal user effort
Solution as automated as possible

Generality
Minimal reprogramming for new but
similar stock assessments

Open, multiplatform, archival
Platform-independent
Free of proprietary software
Using stable technologies
Compatible with ADMB, C++, Fortran

Solution has 3 elements

1. Data writing after stock-assessment
model estimation is finished

2. Data reading by suitable graphics and
analysis software (R)

3. Graphics generation from the data,
both of—

Rapid onscreen display graphics
Optional graphics in file storage

Concepts of solution

Save results to structured ASCII file
Use R as graphics engine

Open-source version of S language
Provides graphics & analyses

R graphics are—
modern, extensive, attractive,
programmable,
exportable to many formats

Data transfer…

Transfer data as an R object of type “list”
Arbitrarily complex list of items
Recursive (may contain other lists)
Items, row, columns may be named
Typical items:

Vectors (parameter estimates)
Matrices (numbers of fish at age)
Data frames (time series of abundance indices,
catches, etc.)

Data transfer (2 of 2)

Make ADMB write data in R “dput” format
Structured ASCII file
Contains R object(s)
Compatible with R and S-Plus
Entire data structure can be read into R with
one function call:

> myobj = dget("mydat.rdat")

Sample R object structure (vermilion snapper)

Object

sel.mats
(L of M)

parms (V) n.at.age (M)
l.at.age (M)
c.at.age (M)

comp.mats
(L of M)

steep

Linf

K

Fmsy

q.g1

(etc.)

sel.g1

sel.g2

t.series (DF)

lcomp.g1.ob

lcomp.g1.pr

acomp.g1.ob

acomp.g1.pr

year

F.full

F.g1

F.Fmsy

SSB

L.g1.ob

recruits

L.g1.pr

l.series (DF)

len.bin

sel.msy

sel.m.g1

a.series (DF)

age

length

r0

sel.ix1

sel.ix2

Key
V = vector
M = matrix
L = list
DF = data frame
g1 = gear #1
ix1 = index #1

Note: This was a length-structured stock assessment, unusual in fishery modeling. In a
more typical age-structured assessment, the items in blue would not be present.

Implementation: 3 elements

Helper C++ functions
Help write ADMB data to file in format expected
by R

User code in REPORT_SECTION of ADMB
Writes specific items needed
Repeatedly calls C++ functions

Set of generalized R functions
Each fn makes group of related plots
Each searches for appropriate data in object
They make diagnostics and results plots
Optionally, export all plots & tables to files

Implementation: one trick

Use standard names in R object.
n.at.len: n-at-length matrix (year × N)
sel.x: list of fishing-gear-selection matrices
(year × proportion)
lcomp.x.ob, lcomp.x.pred: matrices of length
compositions (year × length-bin)
L.x.ob, L.x.pred: annual vectors (length)

Then, standard graphics functions work
with most assessments.

R functions can find data elements that match
patterns.

To use framework (1 of 3)

Include C++ in ADMB template

GLOBALS_SECTION
#include "admodel.h"
#include "mhp-s-funcs.cpp"

To use framework (2 of 3):

Add code to REPORT_SECTION

Similar code for each assessment.
A recent assessment used 142 lines
(309 including comments)
Partial example follows...

Writing some matrices....

// ------------ START LIST OF LENCOMP and AGECOMP MATRICES -------------
// Open the list
sfile << "comp.mats = structure(list(";

// Commercial HAL length comps
write_s_matrix(sfile, value(obs_lenc_cHAL), "cm1", styr, endyr, 1, nlens);
write_s_rownames_vec(sfile, len, 1, nlens, "ma", 0);
write_s_matrix(sfile, value(pred_lenc_cHAL), "cm2", styr, endyr, 1, nlens);
write_s_rownames_vec(sfile, len, 1, nlens, "ma", 0);

...similar blocks omitted...

// Close the list
sfile << "), .Names = c('lcomp.c.hal.ob', 'lcomp.c.hal.pr‘[...]))," <<
endl;

// ----------- END LIST OF LENCOMP and AGECOMP MATRICES ------------

To use (3 of 3):

Run the ADMB model.

Read data into R & make graphs.

> v41 = dget("vsnap41.rdat")

> go(v41)

go() is user function that calls all the graphics
functions for this type of analysis

Preceding creates ~200 graphs in 10 seconds
& optionally writes to files.

Demonstration

NOTE: A demonstration was run at this point in the
presentation, generating 174 graphs.

To replace that, the following slide illustrates reading
the data into R. Later slides show some typical
graphs from a fish stock assessment.

The following graphs are illustrative only and do not
show the status of any actual fish population!

►The R console to
the left shows
reading a model
output file & printing
some information
about it with
standard R
functions.

►The data object is
read with the first
line. The “str”
function shows its
components.

►The “parms”
vector holds 17
named parameter
estimates.

►The “n.at.age”
matrix has yrs for its
row names, ages for
column names.

►The graph to
the left shows
residuals in fitting
age distribution
by year.

►One such
graph is
generated for
each series of
age-composition
data found.

►Graph titles are
generated
automatically to
match data found
in the data object.

►The graph to
the left shows
time trajectory of
the population’s
egg production (a
measure of
spawning stock).

►The trajectory
is normalized to
eggs at maximum
sustainable yield.

►A subdirectory
named from the
data object (v41-
graphs) is created
automatically to
hold all graphics
files.

►The graph to
the left shows
time trajectory of
fishing mortality
rate in the
recreational
headboat fishery.

►One such
graph is made
automatically for
each fishery.

►All graphics
files are named
automatically
similarly to their
titles.

►The graph to
the left shows
time trajectory of
fishing mortality
rate in all
fisheries.

►The legend is
generated
automatically, and
shows fishery
type and gear.

►All graphics
files are saved in
.eps and .png
formats when
saving is turned
on.

►The graph to
the left is
estimated
selectivity of the
fishing gear (by
fish length) in a
commercial hook-
and-line fishery.

►One such
graph is
generated for
each selectivity
curve estimated.

►As in other
graphs, titles are
generated
automatically.

►The graph to
the left shows
estimated and
observed (solid)
relative
abundance in a
fishery-
independent
survey.

►One graph is
generated for
each abundance
index used.

►As with other
data, abundance
indices are found
within the data
object
automatically
using R’s grep()
function.

►The graph to
the left shows
estimated (line)
and observed
(dots) length
composition for
one fishery–year
combination.

►One such
graph is
generated for
each
combination.

►Graphs like this
form over 50% of
the generated
graphs per model
run.

►The table at left
is from a recent
final report.

►It was
generated as
LaTeX code from
the data object by
the R “Hmisc”
package by Frank
Harrell.

►We are now
automating
production of
such tables.

►Tables can be
output as HTML
for MS- Word
users.

End of demo…

That concludes the demonstration of
typical graphs & tables generated.

Thank you for your attention.

The talk itself continues for several
more slides!

Status in March, 2004

We use this framework regularly.

All code is well commented, though not
well documented.

It’s a good prototype, not a finished
product.

Extensions since March, 2004

Graphics routines were modified to make
final graphs for reports.

New graphs were programmed in the R
language for specific needs.

R used to generate LaTeX tables (using
Harrell’s Hmisc package).

Output-data object is used for initializing
projections written in R

R includes a complete matrix language.

Further developments

We are attempting to formalize the
framework so that it can be distributed
and used by others within and outside
NMFS.

Contact MHP for more information:
http://shrimp.ccfhrb.noaa.gov/~mprager/

http://shrimp.ccfhrb.noaa.gov/~mprager/

New helper routines in C

A nicer set of C helper routines is being
written as of Aug 2005.

Work by experienced C programmer.

Part of NMFS assessment toolbox.

Will make it easier to use this framework for
new ADMB or C models.

Will not require hand coding of punctuation,
etc., by the analyst.

Expected completion date: fall, 2005.

Fortran functions written (For2R)

A set of Fortran-95 routines has already
been completed, called For2R.

They allow writing an R object from any
Fortran modeling code.

They use Fortran 95, a superset of Fortran 77.

Free Fortran 95 compilers are now available.

This allows output-compatibility of
Fortran and ADMB models.

Common graphics routines can be shared.

Fortran source is available from MHP.

Summary (1/2)

Our framework provides quick
diagnostics for stock-assessment runs.
It also makes data available in R for

Projections
One-off graphs
Other statistical analyses

The time tradeoff is positive.
Several hours’ setup per model
Savings of hours per model run

This time savings allows us to have
many additional diagnostic views.

Summary (2/2)

Use of R gives great flexibility and
automation ability.

Use of “dput/dget” file format allows
storing complex data, with attributes such
as names and labels, in a single file.

Helper subroutines for writing files give
easy integration w/ ADMB, C++, Fortran.

This combination provides a flexible,
extensible solution to postprocessing and
storage of model output.

	A flexible, extensible interface between compiled languages and the statistics system R
	Preface
	Modeling methods
	Problem definition
	Criteria for solution
	Solution has 3 elements
	Concepts of solution
	Data transfer…
	Data transfer (2 of 2)
	Implementation: 3 elements
	Implementation: one trick
	To use framework (1 of 3)
	To use framework (2 of 3):
	Writing some matrices....
	To use (3 of 3):
	Demonstration
	►The R console to the left shows reading a model output file & printing some information about it with standard R functions.��
	►The graph to the left shows residuals in fitting age distribution by year.��►One such graph is generated for each series of a
	►The graph to the left shows time trajectory of the population’s egg production (a measure of spawning stock).��►The trajector
	►The graph to the left shows time trajectory of fishing mortality rate in the recreational headboat fishery.��►One such graph
	►The graph to the left shows time trajectory of fishing mortality rate in all fisheries. ��►The legend is generated automatica
	►The graph to the left is estimated selectivity of the fishing gear (by fish length) in a commercial hook-and-line fishery. �
	►The graph to the left shows estimated and observed (solid) relative abundance in a fishery-independent survey. ��►One graph i
	►The graph to the left shows estimated (line) and observed (dots) length composition for one fishery–year combination.��►One s
	►The table at left is from a recent final report. ��►It was generated as LaTeX code from the data object by the R “Hmisc” pack
	End of demo…
	Status in March, 2004
	Extensions since March, 2004
	Further developments
	New helper routines in C
	Fortran functions written (For2R)
	Summary (1/2)
	Summary (2/2)

